If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=8A^2+20A
We move all terms to the left:
(A)-(8A^2+20A)=0
We get rid of parentheses
-8A^2+A-20A=0
We add all the numbers together, and all the variables
-8A^2-19A=0
a = -8; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·(-8)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*-8}=\frac{0}{-16} =0 $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*-8}=\frac{38}{-16} =-2+3/8 $
| x=4x-50 | | -931=y+-150 | | 17x-1+15x+5=132 | | 18y=864 | | 2z=102 | | 63=7^x | | d+677=-298 | | 2x—3=5 | | z-505=18 | | -3/4-1/2=2+1/4m | | 19=t/12 | | 5(x+6=)−25+x | | (3a)|-12|=-15 | | 12x+141=x | | -30n=630 | | -5x-4=12-3x | | 2^(2x-10)=16 | | 186=-31h | | -8=4x+13 | | -8=4x=13 | | b+27=53 | | n+24=529 | | b+27=42 | | 3x^2-42x-3=0 | | 20y=-500 | | z-18=830 | | z−18=830 | | 10x-19=22+9x | | k+-948=-892 | | k+–948=–892 | | 56n=225 | | -4=z-2 |